Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Transplantation ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499506

RESUMO

BACKGROUND: Co-infection of JC polyomavirus (JCPyV) and BK polyomavirus (BKPyV) is uncommon in kidney transplant recipients, and the prognosis is unclear. This study aimed to investigate the effect of concurrent JCPyV-DNAemia on graft outcomes in BKPyV-infected kidney transplant recipients with polyomavirus-associated nephropathy (PyVAN). METHODS: A total of 140 kidney transplant recipients with BKPyV replication and PyVAN, 122 without concurrent JCPyV-DNAemia and 18 with JCPyV-DNAemia were included in the analysis. Least absolute shrinkage and selection operator regression analysis and multivariate Cox regression analysis were used to identify prognostic factors for graft survival. A nomogram for predicting graft survival was created and evaluated. RESULTS: The median tubulitis score in the JCPyV-DNAemia-positive group was higher than in JCPyV-DNAemia-negative group (P = 0.048). At last follow-up, the graft loss rate in the JCPyV-DNAemia-positive group was higher than in the JCPyV-DNAemia-negative group (50% versus 25.4%; P = 0.031). Kaplan-Meier analysis showed that the graft survival rate in the JCPyV-DNAemia-positive group was lower than in the JCPyV-DNAemia-negative group (P = 0.003). Least absolute shrinkage and selection operator regression and multivariate Cox regression analysis demonstrated that concurrent JCPyV-DNAemia was an independent risk factor for graft survival (hazard ratio = 4.808; 95% confidence interval: 2.096-11.03; P < 0.001). The nomogram displayed favorable discrimination (C-index = 0.839), concordance, and clinical applicability in predicting graft survival. CONCLUSIONS: Concurrent JCPyV-DNAemia is associated with a worse graft outcome in BKPyV-infected kidney transplant recipients with PyVAN.

2.
Sci Rep ; 14(1): 2320, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282035

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the nervous system. ASIC gating is modulated by divalent cations as well as small molecules; however, the molecular determinants of gating modulation by divalent cations are not well understood. Previously, we identified two small molecules that bind to ASIC1a at a novel site in the acidic pocket and modulate ASIC1 gating in a manner broadly resembling divalent cations, raising the possibility that these small molecules may help to illuminate the molecular determinants of gating modulation by divalent cations. Here, we examined how these two groups of modulators might interact as well as mutational effects on ASIC1a gating and its modulation by divalent cations. Our results indicate that binding of divalent cations to an acidic pocket site plays a key role in gating modulation of the channel.


Assuntos
Canais Iônicos Sensíveis a Ácido , Prótons , Cátions Bivalentes/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Mutação
3.
Eur J Med Res ; 28(1): 440, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848987

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) accounts for approximately 2-3% of all adult malignancies. Clear cell renal cell carcinoma (ccRCC), which comprises 70-80% of all RCC cases, is the most common histological subtype. METHODS: ccRCC transcriptome data and clinical information were downloaded from the TCGA database. We used the TCGA and GEPIA databases to analyze relative expression of BMP1 in various types of human cancer. GEPIA was used to perform survival analysis for BMP1 in various cancer types. Upstream binding miRNAs of BMP1 were obtained through several important target gene prediction tools. StarBase was used to predict candidate miRNAs that may bind to BMP1 and candidate lncRNAs that may bind to hsa-miR-532-3p. We analyzed the association between expression of BMP1 and immune cell infiltration levels in ccRCC using the TIMER website. The relationship between BMP1 expression levels and immune checkpoint expression levels was also investigated. RESULTS: BMP1 was upregulated in GBM, HNSC, KIRC, KIRP and STAD and downregulated in KICH and PRAD. Combined with OS and DFS, BMP1 can be used as a biomarker for poor prognosis among patients with KIRC. Through expression analysis, survival analysis and correlation analysis, LINC00685, SLC16A1-AS1, PVT1, VPS9D1-AS1, SNHG15 and the CCDC18-AS1/hsa-miR-532-3p/BMP1 axis were established as the most potential upstream ncRNA-related pathways of BMP1 in ccRCC. Furthermore, we found that BMP1 levels correlated significantly positively with tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression. CONCLUSION: Our results demonstrate that ncRNA-mediated high expression of BMP1 is associated with poor prognosis and tumor immune infiltration in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , RNA Longo não Codificante , Humanos , Proteína Morfogenética Óssea 1 , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Regulação para Cima/genética
4.
Cell Host Microbe ; 31(5): 751-765.e11, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098341

RESUMO

Treating and preventing infections by antimicrobial-resistant bacterial pathogens is a worldwide problem. Pathogens such as Staphylococcus aureus produce an array of virulence determinants, making it difficult to identify single targets for the development of vaccines or monoclonal therapies. We described a human-derived anti-S. aureus monoclonal antibody (mAb)-centyrin fusion protein ("mAbtyrin") that simultaneously targets multiple bacterial adhesins, resists proteolysis by bacterial protease GluV8, avoids Fc engagement by S. aureus IgG-binding proteins SpA and Sbi, and neutralizes pore-forming leukocidins via fusion with anti-toxin centyrins, while maintaining Fc- and complement-mediated functions. Compared with the parental mAb, mAbtyrin protected human phagocytes and boosted phagocyte-mediated killing. The mAbtyrin also reduced pathology, reduced bacterial burden, and protected from different types of infections in preclinical animal models. Finally, mAbtyrin synergized with vancomycin, enhancing pathogen clearance in an animal model of bacteremia. Altogether, these data establish the potential of multivalent mAbs for treating and preventing S. aureus diseases.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/microbiologia , Anticorpos Monoclonais/uso terapêutico , Fagócitos/metabolismo , Leucocidinas/metabolismo , Leucocidinas/uso terapêutico
5.
MAbs ; 15(1): 2195517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074212

RESUMO

Single-chain fragment variable (scFv) domains play an important role in antibody-based therapeutic modalities, such as bispecifics, multispecifics and chimeric antigen receptor T cells or natural killer cells. However, scFv domains exhibit lower stability and increased risk of aggregation due to transient dissociation ("breathing") and inter-molecular reassociation of the two domains (VL and VH). We designed a novel strategy, referred to as stapling, that introduces two disulfide bonds between the scFv linker and the two variable domains to minimize scFv breathing. We named the resulting molecules stapled scFv (spFv). Stapling increased thermal stability (Tm) by an average of 10°C. In multiple scFv/spFv multispecifics, the spFv molecules display significantly improved stability, minimal aggregation and superior product quality. These spFv multispecifics retain binding affinity and functionality. Our stapling design was compatible with all antibody variable regions we evaluated and may be widely applicable to stabilize scFv molecules for designing biotherapeutics with superior biophysical properties.


Assuntos
Anticorpos , Região Variável de Imunoglobulina , Região Variável de Imunoglobulina/química , Fragmentos de Imunoglobulinas
6.
Clin Chem ; 68(6): 814-825, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587713

RESUMO

BACKGROUND: This study was designed to investigate the association between donor-derived cell-free DNA (dd-cfDNA) and renal allograft injuries. METHODS: This single-center study enrolled 113 adult kidney transplant recipients with kidney biopsies. Plasma and urine dd-cfDNA was detected by target region capture sequencing. RESULTS: Plasma dd-cfDNA fraction was increased in multiple types of injuries, but most significantly in antibody-mediated rejection. Plasma dd-cfDNA fraction in isolated antibody-mediated rejection (1.94%, IQR: 1.15%, 2.33%) was higher than in T cell-mediated rejection (0.55%, IQR: 0.50%, 0.73%, P = 0.002) and negative biopsies (0.58%, IQR: 0.42%, 0.78%, P < 0.001), but lower than in mixed rejection (2.49%, IQR: 1.16%, 4.90%, P = 0.342). Increased urine dd-cfDNA concentration was associated with several types of injury, but most significantly with BK polyomavirus-associated nephropathy. Urine dd-cfDNA concentration in BK polyomavirus-associated nephropathy (12.22 ng/mL, IQR: 6.53 ng/mL, 31.66 ng/mL) was respectively higher than that in T cell-mediated rejection (5.24 ng/mL, IQR: 3.22 ng/mL, 6.99 ng/mL, P = 0.001), borderline change (3.93 ng/mL, IQR: 2.45 ng/mL, 6.30 ng/mL, P < 0.001), and negative biopsies (3.09 ng/mL, IQR: 1.94 ng/mL, 5.05 ng/mL, P < 0.001). Plasma dd-cfDNA fraction was positively associated with glomerulitis (r = 0.365, P < 0.001) and peri-tubular capillaritis (r = 0.344, P < 0.001), while urine dd-cfDNA concentration correlated with tubulitis (r = 0.302, P = 0.002). CONCLUSIONS: Both plasma and urine dd-cfDNA are sensitive markers for renal allograft injuries. The interpretation of a specific disease by dd-cfDNA should be combined with other clinical indicators.


Assuntos
Ácidos Nucleicos Livres , Rejeição de Enxerto , Transplante de Rim , Adulto , Aloenxertos , Anticorpos , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/urina , Rejeição de Enxerto/diagnóstico , Humanos , Rim , Doadores de Tecidos
7.
Front Endocrinol (Lausanne) ; 13: 834187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464062

RESUMO

Objective: This study aimed to explore the molecular mechanism of cytoplasmic vacuolation caused by BK polyomavirus (BKPyV) and thus search for potential target for drug repurposing. Methods: Morphological features of BK polyomavirus-associated nephropathy (BKPyVAN) were studied under light and electron microscopes. Microarray datasets GSE75693, GSE47199, and GSE72925 were integrated by ComBat, and differentially expressed genes (DEGs) were analyzed using limma. Furthermore, the endoplasmic reticulum (ER)-related genes obtained from GenCLiP 2.0 were intersected with DEGs. GO and KEGG enrichment pathways were performed with intersection genes by R package clusterProfiler. The single-cell RNA sequencing (scRNA-seq) from a BKPyVAN recipient was analyzed with a dataset (GSE140989) downloaded from Gene Expression Omnibus (GEO) as control for gene set variation analysis (GSVA). Immunohistochemistry and electron microscopy of kidney sections from drug-induced ERS mouse models were performed to explore the association of ERS and renal tubular vacuolation. Protein-protein interaction (PPI) network of the intersection genes was constructed to identify hub target. AutoDock was used to screen Food and Drug Administration (FDA)-approved drugs that potentially targeted hub gene. Results: Light and electron microscopes exhibited obvious intranuclear inclusions, vacuoles, and virus particles in BKPyV-infected renal tubular cells. Transcriptome analysis revealed 629 DEGs between samples of BKPyVAN and stable transplanted kidneys, of which 16 were ER-associated genes. GO analysis with the intersection genes illustrated that ERS-related pathways were significantly involved, and KEGG analysis showed a prominent enrichment of MAPK, Toll-like receptor, and chemokine signaling pathways. GSVA analysis of the proximal tubule revealed similar pathways enrichment. An electron microscope image of the kidney from ERS mouse models showed an obvious renal tubular vacuolation with prominent activation of ERS markers verified by immunohistochemistry. Furthermore, DDIT3 was identified as the hub gene based on PPI analysis, and ZINCOOOOO1531009 (Risedronate) was indicated to be a potential drug for DDIT3. Conclusion: ERS was involved in renal tubular cytoplasmic vacuolation in BKPyVAN recipients. Risedronate was screened as a potential drug for BKPyVAN by targeting DDIT3.


Assuntos
Vírus BK , Transplante de Rim , Infecções por Polyomavirus , Animais , Vírus BK/genética , Estresse do Retículo Endoplasmático/genética , Camundongos , Infecções por Polyomavirus/etiologia , Ácido Risedrônico , Estados Unidos
8.
Cancer Chemother Pharmacol ; 89(4): 515-527, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35298699

RESUMO

PURPOSE: Preclinical characterization of cetrelimab (JNJ-63723283), a fully humanized immunoglobulin G4 kappa monoclonal antibody targeting programmed cell death protein-1 (PD-1), in human cancer models. METHODS: Cetrelimab was generated by phage panning against human and cynomolgus monkey (cyno) PD-1 extracellular domains (ECDs) and affinity maturation. Binding to primate and rodent PD-1 ECDs, transfected and endogenous cell-surface PD-1, and inhibition of ligand binding were measured. In vitro activity was evaluated using cytomegalovirus recall, mixed lymphocyte reaction, staphylococcal enterotoxin B stimulation, and Jurkat-PD-1 nuclear factor of activated T cell reporter assays. In vivo activity was assessed using human PD-1 knock-in mice implanted with MC38 tumors and a lung patient-derived xenograft (PDX) model (LG1306) using CD34 cord-blood-humanized NSG mice. Pharmacodynamics, toxicokinetics, and safety were assessed in cynos following single and/or repeat intravenous dosing. RESULTS: Cetrelimab showed high affinity binding to human (1.72 nM) and cyno (0.90 nM) PD-1 and blocked binding of programmed death-ligand 1 (PD-L1; inhibitory concentration [IC] 111.7 ng/mL) and PD-L2 (IC 138.6 ng/mL). Cetrelimab dose-dependently increased T cell-mediated cytokine production and stimulated cytokine expression. Cetrelimab 10 mg/kg reduced mean MC38 tumor volume in PD-1 knock-in mice at Day 21 (P < 0.0001) versus control. In a PDX lung model, 10 mg/kg cetrelimab (every 5 days for six cycles) increased frequency of peripheral T cells and reduced (P < 0.05) mean tumor volume versus control. Activity was consistent with that of established PD-1 inhibitors. Cetrelimab dosing was well tolerated in cynos and mean drug exposure increase was dose-dependent. CONCLUSION: Cetrelimab potently inhibits PD-1 in vitro and in vivo, supporting its clinical evaluation.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Inibidores de Checkpoint Imunológico , Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Macaca fascicularis , Camundongos , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores
9.
Proteins ; 90(1): 270-281, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34405904

RESUMO

This study uses differential scanning calorimetry, X-ray crystallography, and molecular dynamics simulations to investigate the structural basis for the high thermal stability (melting temperature 97.5°C) of a FN3-like protein domain from thermophilic bacteria Thermoanaerobacter tengcongensis (FN3tt). FN3tt adopts a typical FN3 fold with a three-stranded beta sheet packing against a four-stranded beta sheet. We identified three solvent exposed arginine residues (R23, R25, and R72), which stabilize the protein through salt bridge interactions with glutamic acid residues on adjacent strands. Alanine mutation of the three arginine residues reduced melting temperature by up to 22°C. Crystal structures of the wild type (WT) and a thermally destabilized (∆Tm -19.7°C) triple mutant (R23L/R25T/R72I) were found to be nearly identical, suggesting that the destabilization is due to interactions of the arginine residues. Molecular dynamics simulations showed that the salt bridge interactions in the WT were stable and provided a dynamical explanation for the cooperativity observed between R23 and R25 based on calorimetry measurements. In addition, folding free energy changes computed using free energy perturbation molecular dynamics simulations showed high correlation with melting temperature changes. This work is another example of surface salt bridges contributing to the enhanced thermal stability of thermophilic proteins. The molecular dynamics simulation methods employed in this study may be broadly useful for in silico surface charge engineering of proteins.


Assuntos
Proteínas de Bactérias/química , Domínio de Fibronectina Tipo III , Cloreto de Sódio/química , Thermoanaerobacter/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Alta , Simulação de Dinâmica Molecular , Domínios Proteicos , Estabilidade Proteica , Thermoanaerobacter/genética
10.
Commun Biol ; 4(1): 174, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564124

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels critical for neuronal functions. Studies of ASIC1, a major ASIC isoform and proton sensor, have identified acidic pocket, an extracellular region enriched in acidic residues, as a key participant in channel gating. While binding to this region by the venom peptide psalmotoxin modulates channel gating, molecular and structural mechanisms of ASIC gating modulation by small molecules are poorly understood. Here, combining functional, crystallographic, computational and mutational approaches, we show that two structurally distinct small molecules potently and allosterically inhibit channel activation and desensitization by binding at the acidic pocket and stabilizing the closed state of rat/chicken ASIC1. Our work identifies a previously unidentified binding site, elucidates a molecular mechanism of small molecule modulation of ASIC gating, and demonstrates directly the structural basis of such modulation, providing mechanistic and structural insight into ASIC gating, modulation and therapeutic targeting.


Assuntos
Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetulus , Cinética , Potenciais da Membrana , Moduladores de Transporte de Membrana/química , Mutação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Taquifilaxia
11.
Front Immunol ; 11: 582678, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072129

RESUMO

Background: The extent and depth of BK polyomavirus (BKPyV) infection in renal allograft correlate with prognosis. This study was designed to evaluate the value of urinary sediment double-immunostaining for predicting BKPyV infection in proximal tubular epithelium. Materials and methods: A total of 76 urine sediment cell blocks, as well as the corresponding transplanted kidney tissues with BK polyomavirus associated-nephropathy (BKPyVAN), were evaluated by automatic double-immunostaining with anti-58-kDa Golgi protein (58K, a proximal renal tubular marker) + anti-SV40-T and anti-homogentisate 1, 2-dioxygenase (HGD, a renal tubular marker) + anti-SV40-T. Results: Immunohistochemical staining demonstrated that 58K was expressed in proximal tubular epithelium but not in distal tubular epithelium or transitional epithelium. Of the 76 patients, 28 (36.8%) had urinary 58K(+)/SV40-T(+) cells and HGD(+)/SV40-T(+) cells, 41 (53.9%) had only HGD(+)/SV40-T(+) cells, one (1.3%) had only 58K(+)/SV40-T(+) cells, and six (7.9%) had only 58K(-)/HGD(-)/SV40-T(+) cells. The presence of urinary 58K(+)/SV40-T(+) cells was correlated with BKPyV infection in proximal tubular epithelium (P < 0.001, r = 0.806). The mean extent of SV40-T staining was significantly more extensive in patients with urinary 58K(+)/SV40-T(+) cells than those without urinary 58K(+)/SV40-T(+) cells (21.4 vs. 12.0%, P < 0.001). The positive predictive value, negative predictive value, sensitivity, and specificity of urinary 58K(+)/SV40-T(+) cells for predicting BKPyV infection in proximal tubular epithelium were 89.7% (95% CI: 71.5-97.3%), 91.5% (95% CI: 78.7-97.2%), 86.7% (95% CI: 68.4-95.6%), and 93.5% (95% CI: 81.1-98.3%), respectively. Conclusion: Urinary sediment double-immunostaining with anti-58K and anti-SV40-T is valuable for predicting the extent and depth of BKPyV infection in renal allograft.


Assuntos
Aloenxertos/imunologia , Vírus BK/fisiologia , Rejeição de Enxerto/imunologia , Transplante de Rim , Túbulos Renais Proximais/patologia , Infecções por Polyomavirus/imunologia , Urotélio/patologia , Adulto , Aloenxertos/virologia , Estudos Transversais , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Transplantados , Urina/citologia
12.
J Alzheimers Dis ; 77(4): 1397-1416, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894244

RESUMO

BACKGROUND: As a consequence of the discovery of an extracellular component responsible for the progression of tau pathology, tau immunotherapy is being extensively explored in both preclinical and clinical studies as a disease modifying strategy for the treatment of Alzheimer's disease. OBJECTIVE: Describe the characteristics of the anti-phospho (T212/T217) tau selective antibody PT3 and its humanized variant hPT3. METHODS: By performing different immunization campaigns, a large collection of antibodies has been generated and prioritized. In depth, in vitro characterization using surface plasmon resonance, phospho-epitope mapping, and X-ray crystallography experiments were performed. Further characterization involved immunohistochemical staining on mouse- and human postmortem tissue and neutralization of tau seeding by immunodepletion assays. RESULTS AND CONCLUSION: Various in vitro experiments demonstrated a high intrinsic affinity for PT3 and hPT3 for AD brain-derived paired helical filaments but also to non-aggregated phospho (T212/T217) tau. Further functional analyses in cellular and in vivo models of tau seeding demonstrated almost complete depletion of tau seeds in an AD brain homogenate. Ongoing trials will provide the clinical evaluation of the tau spreading hypothesis in Alzheimer's disease.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais/metabolismo , Descoberta de Drogas/métodos , Proteínas tau/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Proteínas tau/química
13.
Science ; 362(6414): 598-602, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385580

RESUMO

Broadly neutralizing antibodies against highly variable pathogens have stimulated the design of vaccines and therapeutics. We report the use of diverse camelid single-domain antibodies to influenza virus hemagglutinin to generate multidomain antibodies with impressive breadth and potency. Multidomain antibody MD3606 protects mice against influenza A and B infection when administered intravenously or expressed locally from a recombinant adeno-associated virus vector. Crystal and single-particle electron microscopy structures of these antibodies with hemagglutinins from influenza A and B viruses reveal binding to highly conserved epitopes. Collectively, our findings demonstrate that multidomain antibodies targeting multiple epitopes exhibit enhanced virus cross-reactivity and potency. In combination with adeno-associated virus-mediated gene delivery, they may provide an effective strategy to prevent infection with influenza virus and other highly variable pathogens.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camelídeos Americanos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/química , Anticorpos Antivirais/ultraestrutura , Cristalografia por Raios X , Cães , Feminino , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Biblioteca de Peptídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Anticorpos de Domínio Único
14.
Structure ; 26(7): 1007-1014.e2, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29731233

RESUMO

Fragment crystallizable (Fc) region of immunoglobulin G (IgG) antibody binds to specific Fc receptors (FcγRs) to control antibody effector functions. Currently, engineered specific Fc-FcγR interactions are validated with a static conformation derived from the crystal structure. However, computational evidence suggests that the conformational variability of Fcs plays an important role in receptor recognition. Here we elucidate Fc flexibility of IgG1, IgG2, and IgG1 Fc with mutations (M255Y/S257T/T259E) in solution by small-angle X-ray scattering (SAXS). Measured SAXS profiles and experimental parameters show variations in flexibility between Fc isotypes. We develop and apply a modeling tool for an accurate conformational sampling of Fcs followed by SAXS fitting. Revealed conformational variability of the CH2 domain as low as 10 Å in displacement, illustrates the power of the atomistic modeling combined with SAXS. This inexpensive SAXS-based approach offers to improve the engineering of antibodies for tailoring Fc receptor interactions through altering and measuring Fc flexibility.


Assuntos
Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Espalhamento a Baixo Ângulo , Solubilidade , Difração de Raios X
15.
Proteins ; 86(5): 495-500, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29490423

RESUMO

CD19 is a transmembrane protein expressed on malignant B cells, but not in other lineages or other tissues, which makes it an attractive target for monoclonal antibody-mediated immunotherapy. Anti-CD19 antibody B43 was utilized in a bispecific T-cell engager (BiTE) blinatumomab that demonstrated potency for the treatment of relapsed acute lymphoblastic leukemia. To gain insight into the mechanism of action of the antibody, the crystal structure of B43 Fab was determined in complex with CD19 and in the unbound form. The structure revealed the binding epitope, explained the lack of cross-reactivity toward non-human species, and suggested the key-and-lock mechanism of antigen recognition. Most unexpectedly, the structure revealed a unique molecular topology of CD19. Rather than a tandem of c-type immunoglobulin folds predicted from the amino acid sequence, the extracellular domain of CD19 exhibits an elongated ß-sandwich formed by two immunoglobulin folds by swapping their C-terminal halves. This is the first structure of CD19, which has no sequence homologs.


Assuntos
Anticorpos Monoclonais/química , Antígenos CD19/química , Sequência de Aminoácidos , Animais , Linfócitos B/citologia , Sítios de Ligação , Cristalografia por Raios X , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína
16.
Protein Sci ; 27(3): 798-808, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29168245

RESUMO

The Protein Data Bank (PDB) is the global archive for structural information on macromolecules, and a popular resource for researchers, teachers, and students, amassing more than one million unique users each year. Crystallographic structure models in the PDB (more than 100,000 entries) are optimized against the crystal diffraction data and geometrical restraints. This process of crystallographic refinement typically ignored hydrogen bond (H-bond) distances as a source of information. However, H-bond restraints can improve structures at low resolution where diffraction data are limited. To improve low-resolution structure refinement, we present methods for deriving H-bond information either globally from well-refined high-resolution structures from the PDB-REDO databank, or specifically from on-the-fly constructed sets of homologous high-resolution structures. Refinement incorporating HOmology DErived Restraints (HODER), improves geometrical quality and the fit to the diffraction data for many low-resolution structures. To make these improvements readily available to the general public, we applied our new algorithms to all crystallographic structures in the PDB: using massively parallel computing, we constructed a new instance of the PDB-REDO databank (https://pdb-redo.eu). This resource is useful for researchers to gain insight on individual structures, on specific protein families (as we demonstrate with examples), and on general features of protein structure using data mining approaches on a uniformly treated dataset.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Algoritmos , Cristalografia por Raios X , Mineração de Dados , Bases de Dados de Proteínas , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica
17.
MAbs ; 9(7): 1129-1142, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28758875

RESUMO

Immunostimulatory receptors belonging to the tumor necrosis factor receptor (TNFR) superfamily are emerging as promising targets for cancer immunotherapies. To optimize the agonism of therapeutic antibodies to these receptors, Fc engineering of antibodies was applied to facilitate the clustering of cell surface TNFRs to activate downstream signaling pathways. One engineering strategy is to identify Fc mutations that facilitate antibody multimerization on the cell surface directly. From the analyses of the crystal packing of IgG1 structures, we identified a novel set of Fc mutations, T437R and K248E, that facilitated antibody multimerization upon binding to antigens on cell surface. In a NF-κB reporter assay, the engineered T437R/K248E mutations could facilitate enhanced agonism of an anti-OX40 antibody without the dependence on FcγRIIB crosslinking. Nonetheless, the presence of cells expressing FcγRIIB could facilitate a boost of the agonism of the engineered antibody with mutations on IgG1 Fc, but not on the silent IgG2σ Fc. The Fc engineered antibody also showed enhanced effector functions, including antibody-dependent cell-meditated cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity, depending on the IgG subtypes. Also, the engineered antibodies showed normal FcRn binding and pharmacokinetic profiles in mice. In summary, this study elucidated a novel Fc engineering approach to promote antibody multimerization on a cell surface, which could enhance agonism and improve effector function for anti-TNFR antibodies as well as other therapeutic antibodies.


Assuntos
Fragmentos Fc das Imunoglobulinas/imunologia , Imunoterapia/métodos , Engenharia de Proteínas/métodos , Receptores OX40/agonistas , Animais , Citotoxicidade Celular Dependente de Anticorpos , Humanos , Camundongos , Mutação
18.
Antibodies (Basel) ; 6(3)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31548527

RESUMO

Engineering of fragment crystallizable (Fc) domains of therapeutic immunoglobulin (IgG) antibodies to eliminate their immune effector functions while retaining other Fc characteristics has numerous applications, including blocking antigens on Fc gamma (Fcγ) receptor-expressing immune cells. We previously reported on a human IgG2 variant termed IgG2σ with barely detectable activity in antibody-dependent cellular cytotoxicity, phagocytosis, complement activity, and Fcγ receptor binding assays. Here, we extend that work to IgG1 and IgG4 antibodies, alternative subtypes which may offer advantages over IgG2 antibodies. In several in vitro and in vivo assays, the IgG1σ and IgG4σ variants showed equal or even lower Fc-related activities than the corresponding IgG2σ variant. In particular, IgG1σ and IgG4σ variants demonstrate complete lack of effector function as measured by antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and in vivo T-cell activation. The IgG1σ and IgG4σ variants showed acceptable solubility and stability, and typical human IgG1 pharmacokinetic profiles in human FcRn-transgenic mice and cynomolgus monkeys. In silico T-cell epitope analyses predict a lack of immunogenicity in humans. Finally, crystal structures and simulations of the IgG1σ and IgG4σ Fc domains can explain the lack of Fc-mediated immune functions. These variants show promise for use in those therapeutic antibodies and Fc fusions for which the Fc domain should be immunologically "silent".

19.
MAbs ; 8(6): 1045-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27210805

RESUMO

To support antibody therapeutic development, the crystal structures of a set of 16 germline variants composed of 4 different kappa light chains paired with 4 different heavy chains have been determined. All four heavy chains of the antigen-binding fragments (Fabs) have the same complementarity-determining region (CDR) H3 that was reported in an earlier Fab structure. The structure analyses include comparisons of the overall structures, canonical structures of the CDRs and the VH:VL packing interactions. The CDR conformations for the most part are tightly clustered, especially for the ones with shorter lengths. The longer CDRs with tandem glycines or serines have more conformational diversity than the others. CDR H3, despite having the same amino acid sequence, exhibits the largest conformational diversity. About half of the structures have CDR H3 conformations similar to that of the parent; the others diverge significantly. One conclusion is that the CDR H3 conformations are influenced by both their amino acid sequence and their structural environment determined by the heavy and light chain pairing. The stem regions of 14 of the variant pairs are in the 'kinked' conformation, and only 2 are in the extended conformation. The packing of the VH and VL domains is consistent with our knowledge of antibody structure, and the tilt angles between these domains cover a range of 11 degrees. Two of 16 structures showed particularly large variations in the tilt angles when compared with the other pairings. The structures and their analyses provide a rich foundation for future antibody modeling and engineering efforts.


Assuntos
Diversidade de Anticorpos , Regiões Determinantes de Complementaridade/química , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Leves de Imunoglobulina/química , Anticorpos de Domínio Único/química , Células HEK293 , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Modelos Moleculares , Conformação Proteica , Engenharia de Proteínas , Anticorpos de Domínio Único/genética , Síncrotrons
20.
Proteins ; 84(4): 427-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26800003

RESUMO

Microtubule-associated protein tau becomes abnormally phosphorylated in Alzheimer's disease and other tauopathies and forms aggregates of paired helical filaments (PHF-tau). AT8 is a PHF-tau-specific monoclonal antibody that is a commonly used marker of neuropathology because of its recognition of abnormally phosphorylated tau. Previous reports described the AT8 epitope to include pS202/pT205. Our studies support and extend previous findings by also identifying pS208 as part of the binding epitope. We characterized the phosphoepitope of AT8 through both peptide binding studies and costructures with phosphopeptides. From the cocrystal structure of AT8 Fab with the diphosphorylated (pS202/pT205) peptide, it appeared that an additional phosphorylation at S208 would also be accommodated by AT8. Phosphopeptide binding studies showed that AT8 bound to the triply phosphorylated tau peptide (pS202/pT205/pS208) 30-fold stronger than to the pS202/pT205 peptide, supporting the role of pS208 in AT8 recognition. We also show that the binding kinetics of the triply phosphorylated peptide pS202/pT205/pS208 was remarkably similar to that of PHF-tau. The costructure of AT8 Fab with a pS202/pT205/pS208 peptide shows that the interaction interface involves all six CDRs and tau residues 202-209. All three phosphorylation sites are recognized by AT8, with pT205 acting as the anchor. Crystallization of the Fab/peptide complex under acidic conditions shows that CDR-L2 is prone to unfolding and precludes peptide binding, and may suggest a general instability in the antibody.


Assuntos
Anticorpos Monoclonais/química , Epitopos/química , Fragmentos Fab das Imunoglobulinas/química , Fosfopeptídeos/química , Proteínas tau/química , Sequência de Aminoácidos , Anticorpos Monoclonais/biossíntese , Sítios de Ligação de Anticorpos , Cristalografia por Raios X , Mapeamento de Epitopos , Epitopos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/biossíntese , Modelos Moleculares , Fosfopeptídeos/síntese química , Fosforilação , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...